

Java Boot Camp

 Boot

 Camp

 Manual for Advanced Java

 By

 Java Boot Camp: Advanced (Study Help Manual – 1.0)

 © AgileTestingAlliance.org Page 2 of 15

The contents of this document are the sole and exclusive property of AgileTestingAlliance.org. They may not be

disclosed to any third party, copied or reproduced in any form or used for any purpose, other than that for which they

were provided, without the express permission of AgileTestingAlliance.org. All other logos and product names used

are

trademarks of their respective owners

Document Control

Contacts

Name Company Email Remark

Sunket Ingale

For

AgileTestingAlliance.org

 Java Boot Camp: Advanced (Study Help Manual – 1.0)

 © AgileTestingAlliance.org Page 3 of 15

Change Control

Version Date Author(s) Comments

1.0

23 November

2017

SI

Initial version

Table of Content

1 ABOUT JAVA BOOT CAMP AND THIS MANUAL .. 4

2 OBJECTS AND CONSTRUCTORS IN JAVA ERROR! BOOKMARK NOT DEFINED.

3 INHERITANCE ... ERROR! BOOKMARK NOT DEFINED.

4 METHOD OVERLOADING ... ERROR! BOOKMARK NOT DEFINED.

5 CONSTRUCTOR OVERLOADING ERROR! BOOKMARK NOT DEFINED.

6 POLYMORPHISM ... ERROR! BOOKMARK NOT DEFINED.

7 ABSTRACT METHODS AND CLASSES ERROR! BOOKMARK NOT DEFINED. 8

INTERFACES .. ERROR! BOOKMARK NOT DEFINED.

9 ARRAYLISTS .. ERROR! BOOKMARK NOT DEFINED. 10

 HASHTABLES ... ERROR! BOOKMARK NOT DEFINED.

11 EXCEPTIONS ... 124

12 ENCAPSULATION .. ERROR! BOOKMARK NOT DEFINED.5

13 FINAL KEYWORD .. ERROR! BOOKMARK NOT DEFINED.6

14 READ AND WRITE TEXT FILES ERROR! BOOKMARK NOT DEFINED.7

15 ABOUT ATA ... 18

1 ABOUT JAVA BOOT CAMP AND THIS MANUAL

 Java Boot Camp: Advanced (Study Help Manual – 1.0)

 © AgileTestingAlliance.org Page 4 of 15

Boot

Camp

 Java Boot Camp is a part of the larger initiative by Agile Testing

Alliance known as #TesterBhiCoder.

Agile Testing Alliance has been in favor of building a testing community which is

more aware about agile and testing. Today's testing world is changing and the

demand for technical testers is far more than anyone else.

ATA wants that all the professionals associated with testing and QA step up and learn

coding, be more technical than what they are and start pursuing the next generation

role, hence the name #TesterBhiCoder

ATA is glad that it is able to help fulfil this objective to a large extent. Most of the

folks who have registered for the program are into testing for some time and are

eager to move to automation specially selenium.

This learning manual is intended for all the attendees of the Java Boot Camp. In an online

session this manual will hopefully help them win over Java.

2 OBJECTS AND CONSTRUCTORS IN JAVA

> OBJECTS

Object is an instance of a class. It’s a combination of methods and variables.

When we create an object of a class, that object will obtain all the properties of

that class (Methods, variables, constructors, etc.).

Eg:

MyClass obj = new MyClass(); obj.method1();

Where,

a. MyClass is the name of the class

b. obj is the name of the object. Using obj, method1() can be called.

 Java Boot Camp: Advanced (Study Help Manual – 1.0)

 © AgileTestingAlliance.org Page 5 of 15

> CONSTRUCTORS

Constructor is a code block which is called and executed at the time of object

creation and constructs the values of the object. Constructors look like a method

but have the same name as the class which distinguishes them from methods.

Example:

public class sample1 { public static void

main(String[] args)
{ sample1 var = new sample1();
}

public sample1(){
System.out.println(“Hello World”); } }

Output: Hello World

Note: Multiple objects can be created hence calling the constructor multiple times.

3 INHERITANCE

Inheritance as the name suggests inherits properties from a class (parent) like

methods, variables. Only thing is the methods/variables should be non-private. The

class which inherits the properties is the child class. We use the ‘extends’ keyword

to inherit child class from parent class.

public class Parent {
String str1 = "Sample1"; String str2

= "Sample2"; public static String

str3 = "Sample3"; public static void

main(String[] args)
{

System.out.println("str3 value is "+str3); }

public String Method1()
{ return str1;
}

}

public class Child extends Parent{ public
static void main(String[] args)
{

Child c = new Child();
System.out.println("str2 value of parent class is = "+c.str2);

System.out.println("Parent class Method value is "+c.Method1()); } }

 4 METHOD OVERLOADING

 Java Boot Camp: Advanced (Study Help Manual – 1.0)

 © AgileTestingAlliance.org Page 6 of 15

The concept of method overloading is that multiple methods can have the

same name but due to their different functionalities can be distinguished by the

JVM. The methods can be distinguished by having different number of arguments or

by specifying different datatypes for the arguments.

Eg:

public static void main(String[] args){

 method1(“Hello”,”World”);

}

public static void method1(String a){

 System.out.println(“Value of variable is: ” + a);

}

public static void method1(String a,String b){

 System.out.println(“Value of the variables are: ” + a + “ and ” + b);

}

Note1 In the above program, the latter method1 will be called because two arguments were

given while calling it.

 5 CONSTRUCTOR OVERLOADING

Constructor overloading works the same way as method overloading. One can define

multiple constructors without different types of arguments and during runtime, it

will be defined which constructor gets called.

public class ConstructorOverloading {

 public static void main(String[] args){

 ConstructorOverloading obj = new ConstructorOverloading("John","Jordan");

 }

 public ConstructorOverloading(String Name){ System.out.println("The

name is: "+ Name);

 }

 public ConstructorOverloading(String Name,String Location){

System.out.println("The name is: "+ Name);

 System.out.println("The location is: "+ Location);

 }

}

Notes:

 Java Boot Camp: Advanced (Study Help Manual – 1.0)

 © AgileTestingAlliance.org Page 7 of 15

1. A constructor can be called from another constructor by using the ‘this’

keyword.

Example: Referring the above program, the second constructor can call the first by:

this(“John”);

2. A Sub Class constructor can call a Super Class constructor by using the ‘super’

keyword.

 6 POLYMORPHISM

Polymorphism is an OOPS concept which states that an object can have multiple

forms and types. There are two types of polymorphism: Static and Dynamic. Static

Polymorphism is achieved through method overloading which we have already

discussed. Dynamic polymorphism is determined at runtime and is done

through method overriding.

Example:

class Tools{

 public void cut(){

 System.out.println(“Tools are used to cut”);

 }

}

class Knife extends Tools{

 public void cut (){

 System.out.println(“Knives can cut and shape objects”);

 }

}

class Test{

 public static void main(String[] args){

 Tools ts=new Knife();

 ts.cut(); // prints Knives can cut and shape objects

 Java Boot Camp: Advanced (Study Help Manual – 1.0)

 © AgileTestingAlliance.org Page 8 of 15

 ts =new Vehicle();

 ts.cut(); // prints Tools are used to cut

 }

}

Java Boot Camp: Advanced (Study Help Manual – 1.0)

© AgileTestingAlliance.org Page 9 of 15

7 ABSTRACT METHODS AND CLASSES

A method is said to be abstract when it does not have any sort of implementations

done in it. In other words, an abstract method does not have a body but only the

name and the arguments.

Eg: abstract void cut(String tool, double length);

An Abstract class is defined with the use of the ‘abstract’ keyword and it may or

may not include abstract methods. Ideally, it is expected that you create abstract

methods in abstract classes. An abstract class cannot be instantiated. It does not

make sense to instantiate an abstract class since it may only have methods with no

bodies. However, an abstract class can be inherited in some other class.

Example:

public abstract class Canvas{

 abstract void paint();

}

public class PrimaryColours{

public void paint(){

 System.out.println("Paint using primary colours”);

}

}

public class SecondaryColours{

public void paint(){

 System.out.println("Paint using secondary colours”);

}

}

Why to use Abstract Classes and Methods?

1. When you want to use the same name for the methods but implement them

differently in different classes.

2. To share even private/protected methods to the sub classes

3. When you do not want unrelated classes to access the method implementation.

8 INTERFACES

Java Boot Camp: Advanced (Study Help Manual – 1.0)

© AgileTestingAlliance.org Page 10 of 15

An interface is similar to a class, more so to an abstract class. Except that an

interface can only contain abstract methods. In addition to this, an interface can

only store constant variables and cannot be instantiated by other classes or

interfaces.

Example:

public interface SampleInter {

 void draw();

 void paint();

}

Note: The methods in Interfaces do not use the ‘abstract’ keyword because it is given

that those methods are abstract in nature.

Interfaces are inherited by classes using the ‘implements’ keyword.

Example:

public class A implements B{

 //Class Body

}

In this, A is a class and B is an interface.

9 ARRAYLISTS

Arraylists like arrays store multiple values in a single variable, but are dynamic in the

way that it stores them. It inherits the AbstractList class and implements the List

interface. Arraylist are dynamic in storing values in the way that one can edit values

which are already stored in the indices. Arraylist objects are instantiated using

ArrayList<DataType> class. Where, DataType is the data type of the variable.

Example:

ArrayList<String> New1 = new ArrayList<String>();

Note that we do not define any length to the ArrayList as it can be dynamically

changed.

To add values in the list,

New1.add(“value1”);

New1.add(“value2”);

New1.add(“value3”);

Java Boot Camp: Advanced (Study Help Manual – 1.0)

© AgileTestingAlliance.org Page 11 of 15

New1.add(“value4”);

Indices are allocated to the List automatically when values are added to it.

To get all the values in an array list:

for(int i=0; i<New1.size();i++) {

System.out.println(New1.get(i));

}

Where New1.size() will give the length of the ArrayList.

10 HASHTABLES

Hashtable is a Java Class which inherits the Dictionary class. In Hashtable, the values

are stored in the form of key value pairs. The keys need to be unique hence

Hashtables are said to have unique elements. They may have null values as well.

Hashtables are also synchronised in nature.

Example:

Hashtable<String, String> hsh = new Hashtable<String,String>(); hsh.put("Usrn1",

"Bob"); hsh.put("Usrn2",

"Kevin");

System.out.println(hsh.get(“Usrn1”));

To print all values:

for(String key : hsh.keySet()){

System.out.println(hsh.get(key));

}

11 EXCEPTIONS

Exceptions are error events and its important to handle exceptions during execution

of test case so that it doesn’t halt the test execution during the run time

Handling Exceptions using try-catch block

If we know that a particular code block can generate exceptions then place that code

in try catch block

 try
{

System.out.println("Inside the try block");
System.out.println("Value is "+array[9]);
System.out.println("Successful");

Java Boot Camp: Advanced (Study Help Manual – 1.0)

© AgileTestingAlliance.org Page 12 of 15

}
catch(Exception e)
{

System.out.println("Exception Is "+e); }

Handling Exceptions using throws keyword

If a method is throwing some exception and we need to handle that exception, throws

keyword can be used with that method

 private static void Method1()
{ try

{
Exceptionmethod();

} catch (Exception e) {
System.out.println(e);
}

}
private static void Exceptionmethod() throws Exception {

int array[] = {1,2,3};

System.out.println("Value is "+array[9]);

12 ENCAPSULATION

Encapsulation is an OOPS concept which is a process of wrapping code and data into

a single unit. An encapsulated class in java keeps its data members as private. Hence,

for other classes to be able to access the data need to use certain getter and setter

methods.

Advantages:

1. It gives the user control over the data.

2. One can make the file read-only or write-only by using the getter and setter

methods.

Example:

Class1 private int

age;

public void sAge(int newAge)

{

age = newAge;

}

Class2 encap.sAge(12);

Java Boot Camp: Advanced (Study Help Manual – 1.0)

© AgileTestingAlliance.org Page 13 of 15

Where ‘encap’ is an object of Class1

13 FINAL KEYWORD

Final as the name suggests is a keyword given to variables, methods and classes when

you want to limit their use. So in a way we specify final to restrict functionalities of

the variables, methods and classes

Variable: A final variable can only either be initialized when it is defined or in a

constructor. Once initialized, a final variable value cannot be changed.

final abc = 90;

Method: A final method cannot be overridden

final void abc(){

}

Class: A final class cannot be inherited

final class abc{

}

14 READ-WRITE TEXT FILES

Refer the below example and read the comments for each line

public static void main(String[] args) throws IOException

{

 String Test = "D:\\new.txt"; //Specify the file path

File FC = new File(Test); //Creating a File object and passinf the path.

 FC.createNewFile(); //This would create a new text file

 FileWriter file1 = new FileWriter(Test);//Create object of FileWriter class to edit

the file

BufferedWriter file2 = new BufferedWriter(file1);//Create object of

BufferedWriter class file2.write("This Is First Line."); //Writing In To File.

file2.newLine();//To write next string on new line. file2.write("This Is

Second Line."); //Writing In To File.

 file2.close();

 FileReader file3 = new FileReader(Test); //Create Object of FileReader to read the

file

Java Boot Camp: Advanced (Study Help Manual – 1.0)

© AgileTestingAlliance.org Page 14 of 15

 BufferedReader file4 = new BufferedReader(file3);//Create Object

 of BufferedReader

 String Content = "sample1"; //To make the variable not null

 //Loop to read all lines one by one from file and print It.

 while((Content = file4.readLine())!= null){

 System.out.println(Content);

 }

 file4.close();

}

15 ABOUT ATA

Agile Testing Alliance (ATA) is a non-profit testing community and certification

organization, created to grow agile testing awareness, practices and acceptance.

ATA is a global alliance of visionary industry leaders, prominent authors, leading

educational institutions and testing evangelists who are passionate in proliferation

of agile in testing. There is a huge need of agile testing talent and ATA is a step

towards filling that void. Our mission is to create a learning roadmap specifically in

agile testing space. We understand that learning never stops and that testing

community needs recognition in this quest for knowledge.

Hence we have mapped the journey with milestones that can be evaluated, certified

and thus recognized.

Here is a snapshot of the learning roadmap

Java Boot Camp: Advanced (Study Help Manual – 1.0)

© AgileTestingAlliance.org Page 15 of 15

Our Social Media Presence is as below

Website: http://www.agiletestingalliance.org Twitter
handle @AgileTA
Facebook Page: https://www.facebook.com/AgileTestingAlliance
Youtube link: https://www.youtube.com/user/AgileTestingAlliance
LinkedIn profile: http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
SlideShare: Learning and sharing Presentations and information http://www.slideshare.net/AgileTestingAlliance/
http://www.slideshare.net/ATASlides/

http://www.agiletestingalliance.org/
http://www.agiletestingalliance.org/
http://www.agiletestingalliance.org/
http://www.agiletestingalliance.org/
http://www.agiletestingalliance.org/
http://www.agiletestingalliance.org/
https://www.facebook.com/AgileTestingAlliance
https://www.facebook.com/AgileTestingAlliance
https://www.facebook.com/AgileTestingAlliance
https://www.facebook.com/AgileTestingAlliance
https://www.facebook.com/AgileTestingAlliance
https://www.youtube.com/user/AgileTestingAlliance%0b
https://www.youtube.com/user/AgileTestingAlliance%0b
https://www.youtube.com/user/AgileTestingAlliance%0b
https://www.youtube.com/user/AgileTestingAlliance%0b
https://www.youtube.com/user/AgileTestingAlliance%0b
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.linkedin.com/groups/Agile-Testing-Alliance-5131844
http://www.slideshare.net/AgileTestingAlliance/
http://www.slideshare.net/AgileTestingAlliance/
http://www.slideshare.net/AgileTestingAlliance/
http://www.slideshare.net/ATASlides/
http://www.slideshare.net/ATASlides/
http://www.slideshare.net/ATASlides/
http://www.slideshare.net/ATASlides/
http://www.slideshare.net/ATASlides/
http://www.slideshare.net/ATASlides/

